

POSGRADO EN CIENCIAS MATEMÁTICAS

Examen General de Análisis Real

Julio del 2022 Semestre 2022-2

Puntos: 48 Duración: 6 horas

- Para aprobar este examen se necesita obtener al menos 24 puntos.
- El estudiante no deberá poner más de un problema en una hoja y su nombre deberá estar escrito en la parte superior de cada hoja.
- 1. (6 puntos) Sea (X, Σ, μ) un espacio de medida. Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones con la propiedad $f_n\in L^1(X,\Sigma,\mu)$ para toda $n\in\mathbb{N}$. Suponiendo que

$$\sum_{n=1}^{\infty} \int_{X} |f_n| \, d\mu < \infty$$

prueba que existe una función $f \in L^1(X, \Sigma, \mu)$ tales que $\sum_{n=1}^{\infty} f_n$ converge a f casi dondequiera con respecto a la medida μ y que

$$\int_X f d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu.$$

2. (6 puntos) Sea (X, Σ, μ) un espacio de medida. Prueba que si $f \in L^p(X, \Sigma, \mu)$, $1 \le p \le \infty$, y $\{A_n\}_{n \in \mathbb{N}}$ es un sucesión de conjuntos medibles tales que $\lim_{n \to \infty} \mu(A_n) = 0$ entonces

$$\lim_{n \to \infty} \int_{A_n} f d\mu = 0$$

3. (6 puntos) Prueba que

$$\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\mathbb{R}^2),$$

donde \mathcal{B} denota a la sigma álgebra de Borel y $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) := \{A \times B : A, B \in \mathcal{B}(\mathbb{R})\}.$ Sugerencia: Prueba primero que

$$\{B \in \mathcal{B}(\mathbb{R}) : B \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^2)\} = \mathcal{B}(\mathbb{R}).$$

- 4. (6 puntos) Sean $1 \le p < q < \infty$. ¿Falso o verdadero? (si es verdadero hay que probarlo y si es falso hay que dar un contraejemplo). Nota: λ denota la medida de Lebesgue.
 - (a) $L_p(\mathbb{R}, \lambda) \subseteq L_q(\mathbb{R}, \lambda)$.
 - (b) $L_q(\mathbb{R}, \lambda) \subseteq L_p(\mathbb{R}, \lambda)$.
 - (c) $L_p([0,1], \lambda) \subseteq L_q([0,1], \lambda)$.
 - (d) $L_q([0,1], \lambda) \subseteq L_p([0,1], \lambda)$.
 - (e) $\ell_p \subseteq \ell_q$.
 - (f) $\ell_q \subseteq \ell_p$.
 - (g) $p \leq s \leq q$ si y sólo si $L_p(\mathbb{R}) \cap L_q(\mathbb{R}) \subseteq L_s(\mathbb{R}, \lambda)$.
- 5. (6 puntos) Sea X un conjunto no vacío y considera a \mathbb{R} dotado con la σ -álgebra de los Borel medibles (es decir la σ -álgebra generada por los subconjuntos abiertos de \mathbb{R}).

Supongamos que $\{B_i\}_{i=1}^n$ es una partición de X, es decir $\{B_i\}_{i=1}^n$ es una familia de subconjuntos de X, ajenos dos a dos, cada B_i es un conjunto no vacío y $\bigcup_{i=1}^n B_i = X$.

Sea $\{b_i\}_{i=1}^n \subset \mathbb{R}$ un subconjunto de n números distintos en \mathbb{R} . Definamos $f: X \to \mathbb{R}$ mediante

$$f(x) = \sum_{i=1}^{n} b_i \cdot \mathbb{1}_{B_i}(x)$$
 para toda $x \in X$.

donde $\mathbb{1}_B$ denota la función característica del subconjunto B.

Encuentra **explícitamente** la σ -álgebra más pequeña en X que haga medible a la función f.

6. (6 puntos) Sean $X = (0,3), A_1 = (0,1), A_2 = (0,2)$ y $A_3 = X$. Definamos

$$\mathcal{C} = \{A_1^{i_1} \cap A_2^{i_2} \cap A_3^{i_3} \mid i_1, i_2, i_3 \in \{0, 1\}\},\$$

donde $A_j^1 = A_j$ y $A_j^0 = X \setminus A_j = A_j^c$, el complemento de A_j , para cada $j \in \{1, 2, 3\}$.

- a) Encuentra todos los elementos de \mathcal{C} .
- b) Llamamos un **átomo** a un elemento de la forma $A_1^{i_1} \cap A_2^{i_2} \cap A_3^{i_3}$ si es no vacío. Encuentra todos los átomos.
- c) Prueba que la unión de todos los átomos es una partición de X
- d) Por \mathcal{B} denotamos a la familia de subconjuntos de X que se obtienen mediante uniones de átomos. Prueba que \mathcal{B} es una σ -álgebra en X y que es la σ -álgebra más pequeña en X que contiene a A_1, A_2 y A_3 .
- e) Si definimos a μ en \mathcal{B} tal que $\mu(A_3) = 1, \mu(A_2) = 1/4$ y $\mu(A_1) = 1/2$ y utilizando las reglas usuales evaluamos μ en los restantes elementos de \mathcal{B} . ¿ Es (X, \mathcal{B}, μ) un espacio de medida?