

POSGRADO EN CIENCIAS MATEMÁTICAS

Examen General de Análisis

julio del 2021 Semestre 2021-2

Puntos: 48 Duración: 6 horas

- Para aprobar este examen se necesita obtener al menos 24 puntos, entre ellos por lo menos 6 puntos deberán obtenerse de cada una de las dos áreas.
- El estudiante no deberá poner más de un problema en una hoja y su nombre deberá estar escrito en la parte superior de cada hoja.

Análisis Real

1. (6 puntos) Sean (X, \mathcal{M}, μ) un espacio de medida, $h \in L^1(X, \mu)$ una función integrable y $(f_n)_{n=1}^{\infty}$ una sucesión de funciones medibles, con valores reales, tales que $f_n \geq -h$ c.d. y $\lim_{n\to\infty} f_n = f$ c.d.

Prueba que $\int f_n$ y $\int f$ tienen sentido y que $\int f \leq \liminf_{n \to \infty} \int f_n$.

Nota: para que una integral $\int f$ tenga sentido alemenos una de las integrales $\int f^+$ ó $\int f^-$, debe de ser finita.

2. (6 puntos) Considera el espacio de medida $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), m)$, donde $\mathcal{L}(\mathbb{R}^n)$ denota la σ -álgebra de los Lebesgue medibles y m la medida de Lebesgue.

Supongamos que $(f_k)_{k=1}^{\infty}$ es una sucesión de funciones Lebesgue medibles, con valores reales, tales que $f_k \to f$ c.d.

Prueba que para toda $\epsilon > 0$, existe un conjunto Lebesgue medible F, tal que

$$m(\mathbb{R}^n \setminus F) < \epsilon$$

y tal que

 $f_k \to f$ uniformemente en cualquer subconjunto acotado de F.

Sugerencia: usa Egorov.

- 3. (6 puntos) Sean (X, \mathcal{M}, μ) un espacio de medida y $f \in L^1(X, \mathcal{M}, \mu)$. Sea $\{b_n\}_n$ una sucesión de reales positivos, creciente, tal que $\lim_{n\to\infty} b_n = \infty$.
 - Si definimos $E_n = \{x \in X : |f(x)| \ge b_n\}$ prueba que $\lim_{n\to\infty} b_n \mu(E_n) = 0$.
- 4. (6 puntos) Considera $\mathcal{L}([0,1])$, la σ -álgebra de los Lebesgue medibles en [0,1] y m la medida de Lebesgue sobre $\mathcal{L}([0,1])$.

Falso o verdadero: existe una medida con signo ν sobre $\mathcal{L}([0,1])$ tal que $\nu \ll m$, ν no es la medida cero y $\nu([0,a])=0$ para todo $a\in[0,1]$.

Justifica tu respuesta.

Análisis Complejo

- 1. (6 puntos) Sea $f: \mathbb{C} \to \mathbb{C}$ una función continua tale que f es analítica en el complemento del intervalo [-1,1]. Prueba que entonces f es una función entera.
- 2. (6 puntos) Sea $f(z) = \frac{1}{(1-z^2)(z^2+4)}$ una función definida en todo el plano complejo a excepción de los puntos $z=\pm 1$ y $z=\pm 2i$.
 - (a) Encuentra la serie de Taylor de f alrededor de z=0. ¿Cual es su radio de convergencia?
 - (b) Encuentra la serie de Laurent de f en la región $\{z \in \mathbb{C} \mid |z| > 2\}$.
- 3. (6 puntos) Demuestra que si f es una función meromorfa no constante tal que para todo z no real

$$\frac{\operatorname{Im} f(z)}{\operatorname{Im} z} > 0,$$

entonces los ceros y polos de f son simples y reales.

- 4. (6 puntos) Sea f una función continua en la cerradura del disco unitario y holomorfa en el interior del círculo unitario. Demuestra que si f cumple que:
 - a) no se hace cero en el interior del círculo unitario,
 - b) |f(z)| = 1 para todo z en el círculo unitario $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\},$

entonces f es una función constante.