Examen General para la Maestría en Matemáticas

Topología Algebraica (2020-II) 15 a 24 de febrero de 2021

NT 1		
Nombre:		
110111010		

Cada problema vale 2 puntos. La calificación mínima para aprobar es 7. Duración máxima: 4 horas.

- 1. Sean \mathbb{S}^n la esfera de dimensión n y \mathbb{RP}^n el espacio proyectivo real de dimensión n. Probar
 - (a) $\pi_1(\mathbb{S}^n, *) \cong \{e\} \text{ si } n > 1.$
 - (b) $\pi_1(\mathbb{RP}^n, *) \cong \mathbb{Z}_2 \text{ si } n > 1.$
 - (c) $\pi_q(\mathbb{S}^n, *) \cong \pi_q(\mathbb{RP}^n, *)$ si q > 1.
- 2. Sea $\{(X_{\alpha}, x_{\alpha})\}$, $\alpha \in \Lambda$, una familia de espacios topológicos basados (punteados), y considérese el producto topológico $\prod_{\alpha \in \Lambda} X_{\alpha}$, con punto básico * dado por los puntos básicos $x_{\alpha} \in X_{\alpha}$. Probar que las proyecciones $p_{\alpha} : \prod_{\alpha \in \Lambda} X_{\alpha} \longrightarrow X_{\alpha}$ inducen un isomorfismo $\pi_q(\prod_{\alpha \in \Lambda} X_{\alpha}, *) \cong \prod_{\alpha \in \Lambda} \pi_q(X_{\alpha}, x_{\alpha})$.
- 3. Sea \mathbb{CP}^n el espacio proyectivo complejo de dimensión n. Probar

$$H_q(\mathbb{CP};R)\cong \begin{cases} 0 & \text{si } q \text{ es impar} \\ R & \text{si } q \text{ es par y } 0\leq q\leq 2n. \end{cases}$$

4. Considérese la cuña de esferas $\mathbb{S}^2 \vee \mathbb{S}^1$. Calcular sus R-módulos de homología reducida $\widetilde{H}_q(\mathbb{S}^2 \vee \mathbb{S}^1; R)$.

5. Calcular la característica de Euler $\chi(\mathbb{RP}^n)$ si $n\geq 0.$

¡Mucha suerte!