DINÁMICA POBLACIONAL Y EVOLUTIVA: UNA INTRODUCCIÓN A LAS ECUACIONES DE LA VIDA

Dr. Marco Tulio Angulo Ballesteros Instituto de Matemáticas, UNAM Juriquilla Mayo 2024

Contexto. La dinámica poblacional y evolutiva tienen como objetivo describir los principios matemáticos de acuerdo a los cuales la vida en la tierra persiste a lo largo del tiempo y evoluciona, buscando entender el mundo en que vivimos y el "material" del que estamos hecho. La dinámica poblacional busca describir los mecanismos ecológicos que le permiten a un conjunto de poblaciones (biológicas, sociales, etc.) persistir a lo largo del tiempo a pesar de las muchas y complejas formas en que pueden interactuar (competencia, cooperación, etc.). La dinámica evolutiva busca describir los mecanismos de mutación y selección que le permiten a la información (biológica, social, etc.) reproducirse. Ambos mecanismos pueden describirse de manera formal, haciendo que la Ecología (dinámica poblacional) y la Evolución (dinámica evolutiva) sean dos de las ramas de las ciencias biológicas que pueden entenderse de manera mas matemáticamente rigurosa. En particular, a medida de que los problemas que abordan las ciencias biológicas se vuelven mas complejos, este enfoque formal se ha vuelto cada vez mas indispensable de entender.

Sobre el seminario. El objetivo del seminario sera estudiar algunos resultados fundacionales de la dinámica poblacional y evolutiva, introduciendo a los estudiantes a las fascinantes y sorprendentemente simples leyes que gobiernan la persistencia y evolución de los sistemas vivos, a pesar de lo complicado que puedan parecer. Para esto estudiaremos algunos temas selectos del libro clásico "Evolutionary Games and Population Dynamics" [1] y del libro mas reciente "Evolutionary dynamics: exploring the equations of life" [2].

Organización. El seminario busca una participación activa de sus miembros. El formato del curso serán exposiciones por el profesor y por los alumnos, discusión de artículos, y trabajo individual en un proyecto final.

Evaluación. Asistencia¹ y participación en clase (20%); exposiciones y tareas (30%); evaluación individual del proyecto final (50%).

Requisitos. Ecuaciones diferenciales ordinarias. Algebra lineal. Habilidad para programar en en algún lenguaje.

Temario.

- 1. Introducción.
 - a. Dinámica poblacional, ecología y sus objetivos.
 - b. Dinámica evolutiva, sus mecanismos y objetivos.
- 2. Una vista a la Teoría de Sistemas dinámicos desde una perspectiva ecológica.

¹ El profesor se reserva el derecho de tomar lista de forma intermitente y sin previo aviso.

- a. Crecimiento logistico
 - Dinámica poblacional y dependencia de la densidad.
 - Crecimiento exponencial y crecimiento logistico.
 - Equilibrios estables e inestables.
 - Bifurcaciones.
- b. Ecuaciones de Lokta-Volterra para sistemas predador-presa
 - La ecuación de presa-predador.
 - Recordando la noción de solución y unidad en ecuaciones diferenciales.
 - Análisis de la ecuación de Lotka-Volterra y el principio de Volterra.
 - El concepto de omega-limite y funciones de Lyapunov.
 - Coexistencia de predadores y presa.
- c. Las ecuaciones de Lokta-Volterra para dos especies competidoras.
 - Conceptos básicos de ecuaciones diferenciales lineales.
 - Linealización de ecuaciones no lineales.
 - La ecuación de competición.
 - Sistemas cooperativos.
- d. Ejemplos de ecuaciones de Lotka-Volterra para mas de dos poblaciones.
 - La ecuación general y sus puntos de equilibrio estables.
 - Cadenas tróficas.
- 3. Juegos dinámicos y las Ecuaciones del Replicador
 - a. Estrategias evolutivamente estables.
 - Gavilanes y palomas.
 - Estabilidad evolutiva.
 - Juegos en la Forma Normal.
 - Estrategias evolutivamente estables.
 - Juegos poblacionales.
 - b. La Dinámica del Replicador.
 - La ecuación del Replicador.
 - Equilibrios de Nash y estados evolutivamente estables.
 - Ejemplos de dinámicas del replicador.
 - Promedios en el tiempo y el principio de exclusion.
- 4. Genetica poblacional y juegos evolutivos
 - a. Sistemas dinámicos discretos y genética poblacional.
 - Genotipos.
 - La ley de Hardy-Weinberg.
 - El modelo de selección y el incremento en el fitness promedio.
 - El caso de dos alelos.
 - La ecuación de mutación selección recombinación.
 - La ecuación de selección en tiempo continuo.

Bibliografia.

- [1] Hofbauer, J., & Sigmund, K. (1988). The theory of evolution and dynamical systems: mathematical aspects of selection. Cambridge university press.
- [2] Nowak, M. A. (2006). Evolutionary dynamics. Harvard University Press.