

POSGRADO EN CIENCIAS MATEMÁTICAS

Examen General de Análisis Complejo

Enero 2025 Semestre 2025-1

Puntos: 36 Duración: 6 horas

- Para aprobar este examen se necesita obtener al menos 24 puntos.
- El estudiante no deberá poner más de un problema en una hoja, su nombre deberá estar escrito en la parte superior de cada hoja y deberá enumerar todas la hojas.

En lo que sigue denotamos $D_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}.$

- 1. (6 puntos) Sea f una función holomorfa en la región Ω que contiene al disco unitario cerrado. Demuestra que si f cumple que:
 - (a) no se hace cero en el interior del crrculo unitario,
 - (b) |f(z)| = 1 para todo z en el círrculo unitario, |z| = 1,

entonces f es una función constante en todo Ω .

2. (6 puntos) Calcula la integral:

$$\int_{\gamma} \frac{z+i}{z^2+2iz-4} dz$$

donde $\gamma:[0,2\pi]\to\mathbb{C}$ está dada por $\gamma(t)=-(1+i)+2e^{i\pi t}$.

- 3. (6 puntos) Si $f: D_1(0) \to \mathbb{C}$ es una función tal que f^2 y f^3 son holomorfas en $D_1(0)$ prueba que f también es holomorfa en $D_1(0)$.
- 4. (6 puntos) Prueba que si $f: D_r(z_0) \setminus \{z_0\} \to \mathbb{C}$ tiene una singularidad no removible en z_0 , entonces e^f tiene una singularidad esencial en z_0 .
- 5. (6 puntos) Sean Ω y G abiertos del plano complejo, $f:\Omega\to G$ holormorfa, y $\varphi:G\to\mathbb{C}$ de clase C^2 en G.
 - (a) Demuestra que

$$\Delta \varphi \circ f = ((\Delta \varphi) \circ f)|f'|^2. \tag{1}$$

(b) Concluye que para p > 1,

$$\Delta |f|^p = p|f|^{p-2}|f'|^2. (2)$$

- (c) Si $u: G \to \mathbb{C}$ es armónica, prueba que $u \circ f$ es armónica en Ω .
- 6. (6 puntos) Sea Ω un dominio en $\mathbb C$ y por dA_{ζ} denotamos la medida de área en $\mathbb C$.
 - (a) Sea $f:\Omega\to\mathbb{C}$ holomorfa. Si $a\in\Omega$ y r>0 son tales que $\overline{D}_r(a)\subset\Omega$, prueba que

$$f(a) = \frac{1}{i\pi r^2} \iint_{D_r(a)} f(\zeta) dA_{\zeta}.$$
 (3)

(b) Demuestra que si $K \subset \Omega$ es un compacto, entonces para cualquier $f: \Omega \to \mathbb{C}$ holomorfa con $f \in L_2(\Omega)$ (es decir, tal que $||f||_{L_2(\Omega)} = \left(\iint_{\Omega} |f(\zeta)|^2 dA_{\zeta}\right)^{\frac{1}{2}}$ es finito), se tiene

$$\max_{z \in K} |f(z)| \le \frac{2}{\sqrt{\pi}\rho_K} ||f||_{L_2(\Omega)},\tag{4}$$

donde $\rho_K = \operatorname{dist}(K, \partial \Omega)$.

- (c) Demuestra que si f es entera y $\iint_{\mathbb{C}} |f(\zeta)|^2 dA_{\zeta}$ es finito, entonces $f \equiv 0$.
- (d) Si $(f_n:\Omega\to\mathbb{C})_{n=1}^\infty$ es una sucesión de funciones holomorfas en Ω y acotada en la norma de $L_2(\Omega)$, prueba que es una sucesión normal, esto es, que posee una subsucesión que converge uniformemente en compactos a una función holomorfa $f:\Omega\to\mathbb{C}$.